Differentiable Genetic Programming
نویسندگان
چکیده
We introduce the use of high order automatic differentiation, implemented via the algebra of truncated Taylor polynomials, in genetic programming. Using the Cartesian Genetic Programming encoding we obtain a high-order Taylor representation of the program output that is then used to back-propagate errors during learning. The resulting machine learning framework is called differentiable Cartesian Genetic Programming (dCGP). In the context of symbolic regression, dCGP offers a new approach to the long unsolved problem of constant representation in GP expressions. On several problems of increasing complexity we find that dCGP is able to find the exact form of the symbolic expression as well as the constants values. We also demonstrate the use of dCGP to solve a large class of differential equations and to find prime integrals of dynamical systems, presenting, in both cases, results that confirm the efficacy of our approach.
منابع مشابه
Regularity Conditions for Non-Differentiable Infinite Programming Problems using Michel-Penot Subdifferential
In this paper we study optimization problems with infinite many inequality constraints on a Banach space where the objective function and the binding constraints are locally Lipschitz. Necessary optimality conditions and regularity conditions are given. Our approach are based on the Michel-Penot subdifferential.
متن کاملOn Sequential Optimality Conditions without Constraint Qualifications for Nonlinear Programming with Nonsmooth Convex Objective Functions
Sequential optimality conditions provide adequate theoretical tools to justify stopping criteria for nonlinear programming solvers. Here, nonsmooth approximate gradient projection and complementary approximate Karush-Kuhn-Tucker conditions are presented. These sequential optimality conditions are satisfied by local minimizers of optimization problems independently of the fulfillment of constrai...
متن کاملDifferentiable Functional Program Interpreters
Programming by Example (PBE) is the task of inducing computer programs from input-output examples. It can be seen as a type of machine learning where the hypothesis space is the set of legal programs in some programming language. Recent work on differentiable interpreters relaxes the discrete space of programs into a continuous space so that search over programs can be performed using gradient-...
متن کاملThe KKT optimality conditions for constrained programming problem with generalized convex fuzzy mappings
The aim of present paper is to study a constrained programming with generalized $alpha-$univex fuzzy mappings. In this paper we introduce the concepts of $alpha-$univex, $alpha-$preunivex, pseudo $alpha-$univex and $alpha-$unicave fuzzy mappings, and we discover that $alpha-$univex fuzzy mappings are more general than univex fuzzy mappings. Then, we discuss the relationships of generalized $alp...
متن کاملA differentiable approach to inductive logic programming
Recent work in neural abstract machines has proposed many useful techniques to learn sequences of applications of discrete but differentiable operators. These techniques allow us to model traditionally procedural problems using neural networks. In this work, we are interested in using neural networks to learn to perform logic reasoning. We propose a model that has access to differentiable opera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017